大数据技术和应用场景
更新时间 2021-09-11 18:26:02    浏览 0   

TIP

本文主要是介绍 大数据技术和应用场景 。

# 大数据技术和应用场景

# 什么是大数据

说起大数据,估计大家都觉得只听过概念,但是具体是什么东西,怎么定义,没有一个标准的东西,因为在我们的印象中好像很多公司都叫大数据公司,业务形态则有几百种,感觉不是很好理解,所以我建议还是从字面上来理解大数据,在维克托迈尔-舍恩伯格及肯尼斯库克耶编写的《大数据时代》提到了大数据的4个特征:

    1. 数量大,只有数据体量达到了PB级别以上,才能被称为大数据。1PB等于1024TB,1TB等于1024G,那么1PB等于1024*1024个G的数据。
    1. 价值大,你如果有1PB以上的全国所有20-35年轻人的上网数据的时候,那么它自然就有了商业价值,比如通过分析这些数据,我们就知道这些人的爱好,进而指导产品的发展方向等等。如果有了全国几百万病人的数据,根据这些数据进行分析就能预测疾病的发生,这些都是大数据的价值。
    1. 多样性,如果只有单一的数据,那么这些数据就没有了价值,比如只有单一的个人数据,或者单一的用户提交数据,这些数据还不能称为大数据,所以说大数据还需要是多样性的,比如当前的上网用户中,年龄,学历,爱好,性格等等每个人的特征都不一样,这个也就是大数据的多样性,当然了如果扩展到全国,那么数据的多样性会更强,每个地区,每个时间段,都会存在各种各样的数据多样性。
    1. 速度快,就是通过算法对数据的逻辑处理速度非常快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。

# 大数据的行业应用

wxmp

大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹。

  • 制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
  • 金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
  • 汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
  • 互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
  • 电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
  • 能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
  • 物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。
  • 城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。
  • 生物医学,大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
  • 体育娱乐,大数据可以帮助我们训练球队,决定投拍哪种题财的影视作品,以及预测比赛结果。
  • 安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
  • 个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。

大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响。

# 大数据使用的技术

说起大数据,大数据有三个层数据采集、存储、计算三层。

wxmp
  1. 数据采集层,以App、Saas为代表的服务。 大数据基础阶段需掌握的技术有:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、Redis以及Hadoop、MapReduce、HDFS、Yarn等。
wxmp
  1. 数据存储层,比如云存储,需掌握的技术有:HBase、Hive、Sqoop等。 比如:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是HDFS的封装,本质是数据存储、NoSQL数据库。 HBase是一种Key/Value系统,部署在HDFS上,克服了HDFS在随机读写这个方面的缺点,与Hadoop一样,HBase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
wxmp
  1. 数据计算应用层,以数据为基础,为将来的移动社交、交通、教育,金融进行服务,涉及到大数据架构设计阶段需掌握的技术有:Flume分布式、Zookeeper、Kafka等,以及大数据实时计算阶段需掌握的技术有:Mahout、Spark、Storm。

# 大数据的岗位

  1. 数据分析师Data analyst 指熟悉相关业务,熟练搭建数据分析框架,掌握和使用相关的分析常用工具和基本的分析方法,进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见。
  2. 数据架构师Data architect 对Hadoop解决方案的整个生命周期进行引导,包括需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署。深入掌握如何编写MapReduce的作业及作业流的管理完成对数据的计算,并能够使用Hadoop提供的通用算法, 熟练掌握Hadoop整个生态系统的组件如: Yarn,HBase、Hive、Pig等重要组件,能够实现对平台监控、辅助运维系统的开发。
  3. 大数据工程师Big DataEngineer 收集和处理大规模的原始数据(包括脚本编写,网页获取,调用APIs,编写SQL查询等);将非结构化数据处理成适合分析的一种形式,然后进行分析;根据所需要的和专案分析商业决策。
  4. 数据仓库管理员Data warehousemanager 指定并实施信息管理策略;协调和管理的信息管理解决方案;多个项目的范围,计划和优先顺序安排;管理仓库的各个方面,比如数据外包,移动,质量,设计和实施。
  5. 数据库管理员Database manager 提高数据库工具和服务的有效性;确保所有的数据符合法律规定;确保信息得到保护和备份;做定期报告;监控数据库性能;改善使用的技术;建立新的数据库;检测数据录入程序;故障排除。
  6. 商业智能分析员Businessintelligence analyst 就工具,报告或者元数据增强来进行传播信息;进行或协调测试,以确保情报的定义与需求相一致;使用商业智能工具来识别或监测现有和潜在的客户;综合目前的商业只能和趋势数据,来支持采取行动的建议;维护或更新的商业智能工具,数据库,仪表板,系统或方法;及时的管理用户流量的商业情报。

# 参考文章

  • https://www.jianshu.com/p/1c3e7b416ba7
更新时间: 2021-09-11 18:26:02
  0
手机看
公众号
讨论
左栏
全屏
上一篇
下一篇
扫一扫 手机阅读
可分享给好友和朋友圈