Hive-基础知识总结
更新时间 2021-09-06 20:40:29    浏览 0   

TIP

本文主要是介绍 Hive-基础知识总结 。

# 一、什么是Hive

# 1.1 hive简介

Hive:由Facebook开源用于解决海量结构化日志的数据统计工具。 Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。

# 1.2 Hive本质

Hive本质:将HQL转化成MapReduce程序

  1. Hive处理的数据存储在HDFS
  2. Hive分析数据底层的实现是MapReduce
  3. 执行程序运行在Yarn上
wxmp

# 二、Hive的优缺点

# 2.1 优点

  1. 操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
  2. 避免了去写MapReduce,减少开发人员的学习成本。
  3. Hive优势在于处理大数据,支持海量数据的分析与计算。
  4. Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。

# 2.2 缺点

  1. Hive的HQL表达能力有限

(1)Hive自动生成的MapReduce作业,通常情况下不够智能化 (2)数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。

  1. Hive的效率比较低

(1)Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。 (2)Hive调优比较困难,粒度较粗

  1. Hive不支持实时查询和行级别更新

(1)hive分析的数据是存储在hdfs上,hdfs不支持随机写,只支持追加写,所以在hive中不能delete和update,只能select和insert

# 三、Hive架构原理

wxmp
  1. 用户接口:Client

CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)

  1. 元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等; 默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

  1. Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

  1. 驱动器:Driver

(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。 (2)编译器(Physical Plan):将AST编译生成逻辑执行计划。 (3)优化器(Query Optimizer):对逻辑执行计划进行优化。 (4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。

# 四、Hive的运行机制

wxmp

Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。

# 五、Hive和 数据库比较

由于 Hive 采用了类似SQL 的查询语言 HQL(Hive Query Language),因此很容易将 Hive 理解为数据库。其实从结构上来看,Hive 和数据库除了拥有类似的查询语言,再无类似之处。本文将从多个方面来阐述 Hive 和数据库的差异。数据库可以用在 Online 的应用中,但是Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。

# 5.1 查询语言

由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。

# 5.2 数据更新

由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不建议对数据的改写,所有的数据都是在加载的时候确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO … VALUES 添加数据,使用 UPDATE … SET修改数据。

# 5.3 执行延迟

Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce框架。由于MapReduce 本身具有较高的延迟,因此在利用MapReduce 执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。

# 5.4 数据规模

由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。

# 参考文章

  • https://blog.csdn.net/weixin_42796403/article/details/110089701
更新时间: 2021-09-06 20:40:29
  0
手机看
公众号
讨论
左栏
全屏
上一篇
下一篇
扫一扫 手机阅读
可分享给好友和朋友圈