ES优化-优化原则和方法
更新时间 2021-08-10 18:49:34    浏览 0   

TIP

本文主要是介绍 ES优化-优化原则和方法 。

# ES的性能优化

es在数据量很大的情况下(数十亿级别)如何提高查询效率?

在es里,不要期待着随手调一个参数,就可以万能的应对所有的性能慢的场景。也许有的场景是你换个参数,或者调整一下语法,就可以搞定,但是绝对不是所有场景都可以这样。

es的性能优化,主要是围绕着fileSystem cache也可以叫做OS cache来进行;

前面已经分析了es写入数据的原理,实际上数据最终都会写入到磁盘中去,当我们搜索读取的时候,系统会将数据放入到os cache中,而es严重依赖于这个os cache,如果我们给机器的内存足够多,在es里存的书库里昂小于内存容量,那么搜索的效率是非常高的,

# 1、减少字段

如果我们的表里有很多的字段,而我们只需要往es库里写入我们需要检索的那几个字段就可以了,对于其他的字段我们可以存到mysql或者说其他的比如Hbase中,hbase的特点是适用于海量数据的在线存储,就是对hbase可以写入海量数据,不要做复杂的搜索,就是做很简单的一些根据id或者范围进行查询的这么一个操作就可以了,从es中根据检索的字段去搜索,拿到的结果可能就十几个doc id,然后根据doc id到hbase里去查询每个doc id对应的完整的数据,给查出来,再返回给前端。简单地说就是:elastcisearch减少数据量仅仅放要用于搜索的几个关键字段即可,尽量写入es的数据量跟es机器的filesystem cache是差不多的就可以了;其他不用来检索的数据放hbase里,或者mysql。

# 2、数据预热

如果说我们按照方案一的方法做了之后,效率还是不行,存的数据量还是超过os cache的空间,那么我们就可以吧一些比较热门的数据,比如在电商系统中,像一些热门的商品,我们可以在后台单独的写一个子系统,每隔一段时间,我们就访问一下,然数据进入到os cache中,这样用户来访问的时候就访问到的是os cache中的数据,就比较快。

# 3、冷热分离

es可以做类似于mysql的水平拆分,就是说将大量的访问很少,频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引,这样可以确保热数据在被预热之后,尽量都让他们留在filesystem os cache里,别让冷数据给冲刷掉。

# 【----------------------------】

# elasticsearch三个重要的优化

# 1、内存优化

在bin/elasticsearch.in.sh中进行配置
修改配置项为尽量大的内存:
ES_MIN_MEM=8g
ES_MAX_MEM=8g
两者最好改成一样的,否则容易引发长时间GC(stop-the-world)

elasticsearch默认使用的GC是CMS GC
如果你的内存大小超过6G,CMS是不给力的,容易出现stop-the-world
建议使用G1 GC
注释掉:
JAVA_OPTS=$JAVA_OPTS -XX:+UseParNewGC”
JAVA_OPTS=$JAVA_OPTS -XX:+UseConcMarkSweepGC”

JAVA_OPTS=$JAVA_OPTS -XX:CMSInitiatingOccupancyFraction=75JAVA_OPTS=$JAVA_OPTS -XX:+UseCMSInitiatingOccupancyOnly”
修改为:
JAVA_OPTS=$JAVA_OPTS -XX:+UseG1GC”
JAVA_OPTS=$JAVA_OPTS -XX:MaxGCPauseMillis=200″

如果G1 GC优点是减少stop-the-world在几率,但是CPU占有率高。
需要更优化的性能,你可以参考
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/G1GettingStarted/index.html

# 2、合理配置主节点和数据节点

配置文件:conf/elasticsearch.yaml
node.master: true
node.data: true

1) 当master为false,而data为true时,会对该节点产生严重负荷;
2) 当master为true,而data为false时,该节点作为一个协调者;
3) 当master为false,data也为false时,该节点就变成了一个负载均衡器。

# 3、设置合理的刷新时间

建立的索引,不会立马查到,这是为什么elasticsearch为near-real-time的原因
需要配置index.refresh_interval参数,默认是1s。
你可以像
http://zhaoyanblog.com/archives/299.html
文件中一样,调用接口配置
也可以直接写到conf/elasticsearch.yaml文件中
index.refresh_interval:1s
这样所有新建的索引都使用这个刷新频率。

除非注明,赵岩的博客 (opens new window)文章均为原创,转载请以链接形式标明本文地址 本文地址:https://zhaoyanblog.com/archives/319.html

# 【----------------------------】

# 漫谈ElasticSearch关于ES性能调优几件必须知道的事(转)

ElasticSearch是现在技术前沿的大数据引擎,常见的组合有ES+Logstash+Kibana作为一套成熟的日志系统,其中Logstash是ETL工具,Kibana是数据分析展示平台。ES让人惊艳的是他强大的搜索相关能力和灾备策略,ES开放了一些接口供开发者研发自己的插件,ES结合中文分词的插件会给ES的搜索和分析起到很大的推动作用。ElasticSearch是使用开源全文检索库ApacheLucene进行索引和搜索的,说架构必须和Lucene的一些东西打交道。

# 关于Lucene

ApacheLucene将写入索引的所有信息组织成一种倒排索引(Inverted Index)的结构之中,该结构是种将词项映射到文档的数据结构。其工作方式与传统的关系数据库不同,大致来说倒排索引是面向词项而不是面向文档的。且Lucene索引之中还存储了很多其他的信息,如词向量等等,每个Lucene都是由多个段构成的,每个段只会被创建一次但会被查询多次,段一旦创建就不会再被修改。多个段会在段合并的阶段合并在一起,何时合并由Lucene的内在机制决定,段合并后数量会变少,但是相应的段本身会变大。段合并的过程是非常消耗I/O的,且与之同时会有些不再使用的信息被清理掉。在Lucene中,将数据转化为倒排索引,将完整串转化为可用于搜索的词项的过程叫做分析。文本分析由分析器(Analyzer)来执行,分析其由分词器(Tokenizer),过滤器(Filter)和字符映射器(Character Mapper)组成,其各个功能显而易见。除此之外,Lucene有自己的一套完整的查询语言来帮助我们进行搜索和读写。

**[注]**ES中的索引指的是查询/寻址时URI中的一个字段如:[host]:[port(9200)]/[index]/[type]/[ID]?[option],而Lucene中的索引更多地和ES中的分片的概念相对应。

# 回到ElasticSearch,ES的架构遵循的设计理念有以下几个特征

  1. 合理的默认配置:只需修改节点中的Yaml配置文件,就可以迅捷配置。这和Spring4中对配置的简化有相似的地方。

  2. 分布式工作模式:ES强大的Zen发现机制不仅支持组广播也支持点单播,且有“知一点即知天下”之妙。

  3. 对等架构:节点之间自动备份分片,且使分片本身和样本之间尽量”远离“,可以避免单点故障。且Master节点和Data节点几乎完全等价。

  4. 易于向集群扩充新节点:大大简化研发或运维将新节点加入集群所需的工作。

  5. 不对索引中的数据结构增加任何限制:ES支持在一个索引之中存在多种数据类型。

  6. 准实时:搜索和版本同步,由于ES是分布式应用,一个重大的挑战就是一致性问题,无论索引还是文档数据,然而事实证明ES表现优秀。

# (一)分片策略

选择合适的分片数和副本数。ES的分片分为两种,主分片(Primary Shard)和副本(Replicas)。默认情况下,ES会为每个索引创建5个分片,即使是在单机环境下,这种冗余被称作过度分配(Over Allocation),目前看来这么做完全没有必要,仅在散布文档到分片和处理查询的过程中就增加了更多的复杂性,好在ES的优秀性能掩盖了这一点。假设一个索引由一个分片构成,那么当索引的大小超过单个节点的容量的时候,ES不能将索引分割成多份,因此必须在创建索引的时候就指定好需要的分片数量。此时我们所能做的就是创建一个新的索引,并在初始设定之中指定这个索引拥有更多的分片。反之如果过度分配,就增大了Lucene在合并分片查询结果时的复杂度,从而增大了耗时,所以我们得到了以下结论:

我们应该使用最少的分片!

主分片,副本和节点最大数之间数量存在以下关系:

节点数<=主分片数*(副本数+1)

**控制分片分配行为。**以上是在创建每个索引的时候需要考虑的优化方法,然而在索引已创建好的前提下,是否就是没有办法从分片的角度提高了性能了呢?当然不是,首先能做的是调整分片分配器的类型,具体是在elasticsearch.yml中设置cluster.routing.allocation.type属性,共有两种分片器even_shard,balanced(默认)。even_shard是尽量保证每个节点都具有相同数量的分片,balanced是基于可控制的权重进行分配,相对于前一个分配器,它更暴漏了一些参数而引入调整分配过程的能力。

每次ES的分片调整都是在ES上的数据分布发生了变化的时候进行的,最有代表性的就是有新的数据节点加入了集群的时候。当然调整分片的时机并不是由某个阈值触发的,ES内置十一个裁决者来决定是否触发分片调整,这里暂不赘述。另外,这些分配部署策略都是可以在运行时更新的,更多配置分片的属性也请大家自行Google。

# (二)路由优化

ES中所谓的路由和IP网络不同,是一个类似于Tag的东西。在创建文档的时候,可以通过字段为文档增加一个路由属性的Tag。ES内在机制决定了拥有相同路由属性的文档,一定会被分配到同一个分片上,无论是主分片还是副本。那么,在查询的过程中,一旦指定了感兴趣的路由属性,ES就可以直接到相应的分片所在的机器上进行搜索,而避免了复杂的分布式协同的一些工作,从而提升了ES的性能。于此同时,假设机器1上存有路由属性A的文档,机器2上存有路由属性为B的文档,那么我在查询的时候一旦指定目标路由属性为A,即使机器2故障瘫痪,对机器1构不成很大影响,所以这么做对灾况下的查询也提出了解决方案。所谓的路由,本质上是一个分桶(Bucketing)操作。当然,查询中也可以指定多个路由属性,机制大同小异。

# (三)ES上的GC调优

ElasticSearch本质上是个Java程序,所以配置JVM垃圾回收器本身也是一个很有意义的工作。我们使用JVM的Xms和Xmx参数来提供指定内存大小,本质上提供的是JVM的堆空间大小,当JVM的堆空间不足的时候就会触发致命的OutOfMemoryException。这意味着要么内存不足,要么出现了内存泄露。处理GC问题,首先要确定问题的源头,一般有两种方案:

1. 开启ElasticSearch上的GC日志

2. 使用jstat命令

3. 生成内存Dump

第一条:在ES的配置文件elasticsearch.yml中有相关的属性可以配置,关于每个属性的用途这里当然说不完。

第二条:jstat命令可以帮助我们查看JVM堆中各个区的使用情况和GC的耗时情况。

第三条:最后的办法就是将JVM的堆空间转储到文件中去,实质上是对JVM堆空间的一个快照。

想了解更多关于JVM本身GC调优方法请参考:http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

另外,通过修改ES节点的启动参数,也可以调整GC的方式,但是实质上和上述方法是等同的。

# (四)避免内存交换

这一点很简单,由于操作系统的虚拟内存页交换机制,会给性能带来障碍,如数据写满内存会写入Linux中的Swap分区。

可以通过在elasticsearch.yml文件中的bootstrap.mlockall设置为true来实现,但是需要管理员权限,需要修改操作系统的相关配置文件。

# (五)控制索引合并

上文提到过,ES中的分片和副本本质上都是Lucene索引,而Lucene索引又基于多个索引段构建(至少一个),索引文件中的绝大多数都是只被写一次,读多次,在Lucene内在机制控制下,当满足某种条件的时候多个索引段会被合并到一个更大的索引段,而那些旧的索引段会被抛弃并移除磁盘,这个操作叫做段合并。

Lucene要执行段合并的理由很简单充分:索引段粒度越小,查询性能越低且耗费的内存越多。频繁的文档更改操作会导致大量的小索引段,从而导致文件句柄打开过多的问题,如修改系统配置,增大系统允许的最大文件打开数。总的来讲,当索引段由多一个合并为一个的时候,会减少索引段的数量从而提高ES性能。对于研发者来讲,我们所能做的就是选择合适的合并策略,尽管段合并完全是Lucene的任务,但随着Lucene开放更多配置借口,新版本的ES还是提供了三种合并的策略tiered,log_byte_size,log_doc。另外,ES也提供了两种Lucene索引段合并的调度器:concurrent和serial。其中各者具体区别,这里暂不赘述,只是抛砖引玉。

# 参考文章

  • https://www.cnblogs.com/huanglog/p/9021073.html
  • https://zhaoyanblog.com/archives/319.html
  • https://www.cnblogs.com/kt-ting/p/12374043.html
更新时间: 2021-08-10 18:49:34
  0
手机看
公众号
讨论
左栏
全屏
上一篇
下一篇
扫一扫 手机阅读
可分享给好友和朋友圈